June 14th 2023 – Rutgers University, NJ 2023 NSF Manufacturing Blue Sky Competition

3D PRINTING OF SHAPE-CONFORMABLE AND STRUCTURAL BATTERIES

Dr. Alexis Maurel

The University of Texas at El Paso

amaurel@utep.edu ()@Alexis_Maurel in www.linkedin.com/in/alexis-maurel

ENERGY STORAGE AND ELECTRONICS 3D PRINTING LABORATORY

In collaboration with

YOUNGSTOWN

STATE UNIVERSITY

Picardie

ules Verne

NAMRC 51 | MSEC 2023 | LEM&P 2023 Conference

3D-Printing

Lithium-ion battery

Battery Manufacturing Challenges:

- Battery performance (capacity, power) and safety
- Battery design (restricted to planar only)
- Structural battery with load-bearing capability

Outline of the presentation

1. WHY 3D PRINTING OF BATTERIES?

2. FILAMENT EXTRUSION

3. POWDER BED FUSION

4. VAT PHOTOPOLYMERIZATION

5. CONCLUSIONS & PERSPECTIVES

1. WHY 3D PRINTING OF BATTERIES?

2023 NSF Manufacturing Blue Sky Competition 3D PRINTING OF SHAPE-CONFORMABLE

electrode

From 2D to 3D electrodes

cathode

anode

t = 0 s

AND STRUCTURAL BATTERIES - Dr. Alexis Maurel **Li-ion battery** Charge US DoE, 2017 THE NOBEL PRIZE IN CHEMISTRY 2019 Charge Meter Current **Positive** Current **Separator** Negative collector **Electrolyte** electrode collector

t = 20,000 s

Gyroid 3D design \rightarrow Faster charge of the battery

t = 10,000 s

mol/m³

0

3

NSP

2023 NSF Manufacturing Blue Sky Competition 3D PRINTING OF SHAPE-CONFORMABLE AND STRUCTURAL BATTERIES - Dr. Alexis Maurel

Kim et al., *Nano Letters* **2015**, 15, 5168. Maurel et al., *Additive Manufacturing*, **2021**.

Asp et al., Advanced Energy and Sustainability Research 2021.

2. FILAMENT EXTRUSION 3D PRINTING OF BATTERIES

Tape casting

Filament extrusion

Thermoplastic filament as

material feedstock

Plasticizer ③

Charges

4

Slurry formulation

Slurry

Solvent

2 Polymer

Under stirring

2023 NSF Manufacturing Blue Sky Competition 3D PRINTING OF SHAPE-CONFORMABLE AND STRUCTURAL BATTERIES - Dr. Alexis Maurel

Development of composite filaments loaded with lithium-ion battery active materials

3D printing of a functional complete battery in a single print

3. POWDER BED FUSION 3D PRINTING OF BATTERIES

2023 NSF Manufacturing Blue Sky Competition 3D PRINTING OF SHAPE-CONFORMABLE AND STRUCTURAL BATTERIES - Dr. Alexis Maurel

Development of composite positive electrodes \rightarrow Polypropylene (PP) polymer matrix loaded with LiFePO₄ (LFP) as lithium-ion battery active material and black carbon (C45) as conductive additive

Maurel et al., Additive Manufacturing 2021.

Filament material extrusion (ME)

Thermoplastic filament as material feedstock

> **Powder Bed Fusion (PBF) Powder** as material feedstock

CAK

RIDGE

National Laboratory Idaho National Laboratory

YOUNGSTOWN

Sandia National

Laboratories

2023 NSF Manufacturing Blue Sky Competition 3D PRINTING OF SHAPE-CONFORMABLE AND STRUCTURAL BATTERIES - Dr. Alexis Maurel

Vat Photopolymerization

Photocurable resin as material feedstock

www.carbon3d.com

Choi et al., Int. J. Adv. Manuf. Technol., 2010.

Projector

Composite resins formulation

UNIVERSITÉ

for each component of a classical lithium-ion or sodium-ion battery

Key parameters \rightarrow Sedimentation, Viscosity, Light-scattering

Note: The introduction of solid particles limits the printing resolution

2023 NSF Manufacturing Blue Sky Competition 3D PRINTING OF SHAPE-CONFORMABLE AND STRUCTURAL BATTERIES - Dr. Alexis Maurel

2023 NSF Manufacturing Blue Sky Competition 3D PRINTING OF SHAPE-CONFORMABLE AND STRUCTURAL BATTERIES - Dr. Alexis Maurel

2023 NSF Manufacturing Blue Sky Competition 3D PRINTING OF SHAPE-CONFORMABLE AND STRUCTURAL BATTERIES - Dr. Alexis Maurel

Maurel et al. (under review)

2023 NSF Manufacturing Blue Sky Competition 3D PRINTING OF SHAPE-CONFORMABLE AND STRUCTURAL BATTERIES - Dr. Alexis Maurel

 \mathbf{O}

formlabs 😽

YOUNGSTOWN

TiO₂-based electrodes for sodium-ion battery negative electrode **Impact of an additional thermal post-processing step?**

Solid sintered Solid green state Thickness: 550 µm 6 b σ = 3.5 mS.cm-1 1 mm 1 mm x 30 x 20 10 µm x 2000

Diameter and thickness \rightarrow 40% shrinkage upon thermal post-processing

Polymer removal during debinding \rightarrow Increased micro-porosity and Improved electrolyte impregnation

Poor electrochemical performances upon cycling 11

Multidisciplinary work \rightarrow Engineering / Electrochemistry / Materials Science

3D printing as an innovative and modular tool to print rechargeable batteries

Manufacturing of shape-conformable / structural / flexible batteries (dual functionality: energy storage and load bearing)

Improved volumetric capacity and power performances

Solid state batteries with enhanced safety relevant to federal agencies and industry

- Develop adequate composite material feedstock (filament, ink, powder, resin) for each component of the battery (electrodes, separator, electrolyte, current collectors)
- High resolution multi-material printing options are needed to manufacture the complete battery in a single step
- Targeting a wide range of applications \rightarrow portable electronics, automotive, naval, aerospace, defense, and biomedical

David Dornfeld Manufacturing Vision Award

National Science Foundation

North American Manufacturing Research Institution of Society of Manufacturing Engineers and The American Society of Mechanical Engineers

2023 NSF Manufacturing Blue Sky Competition

3D PRINTING OF SHAPE-CONFORMABLE AND STRUCTURAL BATTERIES - Dr. Alexis Maurel

Dr. Eric MacDonald Dr. Ana Cristina Martinez ESTRELLA E FULBRIGHT

COMMISSION FRANCO-AMERICAINE

June 14th 2023 – Rutgers University, NJ 2023 NSF Manufacturing Blue Sky Competition

THANK YOU Questions?

Dr. Alexis Maurel

The University of Texas at El Paso

amaurel@utep.edu

www.linkedin.com/in/alexis-maurel

NAMRC 51 | MSEC 2023 | LEM&P 2023 Conference