

Yanglong Lu¹, Bo Shen²

¹The Hong Kong University of Science and Technology ²New Jersey Institute of Technology

- \succ Bioprinting is the printing of biological constructs.
- Two commonly used bioprinting technologies are stereolithography and extrusion-based printing.

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

Transform the healthcare landscape ranging from regenerative medicine to drug discover.

Regenerative medicine

Animal-free meat

Drug discovery and development

1. Research Background

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

> Almost 120,000 people are on the national transplant waiting list in the U.S. alone.

Organ Transplant Waiting Lists in the U.S.

Number of people in the U.S. waiting for an organ transplant, by type (September 2021)

The Organ Shortage Crisis in the U.S.

Number of patients on the waiting list versus patients that have received transplants in 2021, by organ

1. Research Background

5

- Create personalized medicine and treatment plans for the individual based on unique genomic makeup, lifestyle habits, and behavior.
- Integrate with wearable sensors to diagnose functions of human body based on blood pressure, oxygen levels, etc..

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

> Requirements of material selection

	Natural biomaterial	Synthetic biomaterial
Examples	Agarose, alginate, collagen, fibrin, gelatin and hyaluronic acid	Pluronic® [13] and Poly(ethylene glycol) (PEG)
Pros	Compatible with the natural cell environment	 Widely available; Better mechanical properties
Cons	Poor mechanical property	Poor biocompatibility

Visible anomalies in bioprinting process

> Non-homogeneous strands, strand fusion, strand collapse, etc.

Non-homogeneous strand

Strand fusion

Non-homogeneous holes

 Physics-informed anomalies in bioprinting process
 Need a virtual model to establish the correlation between material, structure, mechanical property, and physical quantity (displacement, pressure, blood flow, etc.)

4. Digital Twin of Bioprinting

4.1 Framework of DT in bioprinting

4. Physics-Informed Machine Learning

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

4.1 Physics-constrained dictionary learning

> Improve sensing efficiency and detect anomalies simultaneously

$$\min_{\Phi,\Psi,C_{i}} \left(\alpha \| S - \Psi \gamma \|_{F}^{2} + \| \Phi S - \Phi \Psi \gamma \|_{F}^{2} + \beta \| L - C \gamma \|_{F}^{2} \right)$$

s.t. $\Phi = f(\Psi)$ •----- Optimize Φ based on Ψ
 $\| \gamma_{i} \|_{0} \leq s_{l}, \forall i$ •----- Restrict sparsity level
 $I_{ij}(\Phi) \geq r, \forall i, j$ •----- Reduce redundant infromation

Φ: optimize pixel locations
Ψ: maximize signal sparsity
C: classifier to identify anomaly

Lu, Y., & Wang, Y. (2021). A physics-constrained dictionary learning approach for compression of vibration ¹⁰ signals. *Mechanical Systems and Signal Processing*, *153*, 107434.

4. Physics-Informed Machine Learning

4.2 Physics-based compressive sensing (PBCS)➢ Integrate physical modeling and compressed sensing

 Φ : measurement matrix ψ : basis matrix (transformation matrix in CS or stiffness matrix in PBCS)

S: coefficient vector in CS or load vector in PBCS

Lu, Y., & Wang, Y. (2021). Physics based compressive sensing to monitor temperature and melt flow in laser powder1 bed fusion. *Additive Manufacturing*, *47*, 102304.

12

4.3 Physics-informed neural networks

- Creation of complex and functional tissues and organs that closely mimic the structure and function of natural tissues
 - > Optimize printing process
 - > Predict the behavior of the printed tissue in vivo
 - > Personalize the printing process for individual patients
- > Enable early detection of potential problems after transplantation

Thanks for your attention!

